In mathematical logic,

**Gödel's incompleteness theorems**are two celebrated theorems about the limitations of formal systems, proved by Kurt Gödel in 1931 .These theorems show that there is no complete, consistent formal system that correctly describes the natural numbers, and that no sufficiently strong system describing the natural numbers can prove its own consistency....

Gödel's theorems are theorems in first-order logic, and must ultimately be understood in that context. In formal logic, both mathematical statements and proofs are written in a symbolic language, one where we can mechanically check the validity of proofs so that there can be no doubt that a theorem follows from our starting list of axioms. In theory, such a proof can be checked by a computer, and in fact there are computer programs that will check the validity of proofs. (Automatic proof verification is closely related to automated theorem proving, though proving and checking the proof are usually different tasks.)

To be able to perform this process, we need to know what our axioms are. We could start with a finite set of axioms, such as in Euclidean geometry, or more generally we could allow an infinite list of axioms, with the requirement that we can mechanically check for any given statement if it is an axiom from that set or not (an axiom schema). In computer science, this is known as having a recursive set of axioms. While an infinite list of axioms may sound strange, this is exactly what's used in the usual axioms for the natural numbers, the Peano axioms: the inductive axiom is in fact an axiom schema — it states that if zero has *any property* and whenever any natural number has *that property*, its successor also has *that property*, then all natural numbers have *that property* — it does not specify which property and the only way to say in first-order logic that this is true of all properties is to have infinitely many statements.

Gödel's first incompleteness theorem shows that any such system that allows you to define the natural numbers is necessarily incomplete: it contains statements that are neither provably true nor provably false.

The existence of an incomplete system is in itself not particularly surprising. For example, if you take Euclidean geometry and you drop the parallel postulate, you get an incomplete system (in the sense that the system does not contain all the true statements about Euclidean space). A system can be incomplete simply because you haven't discovered all the necessary axioms.

What Gödel showed is that in most cases, such as in number theory or real analysis, you can *never* create a complete and consistent finite list of axioms, or even an infinite list that can be produced by a computer program. Each time you add a statement as an axiom, there will always be other true statements that still cannot be proved as true, even with the new axiom. Furthermore if the system can prove that it is consistent, then it is inconsistent.

It *is* possible to have a complete and consistent list of axioms that *cannot* be produced by a computer program (that is, the list is not computably enumerable). For example, one might take all true statements about the natural numbers to be axioms (and no false statements). But then there is no mechanical way to decide, given a statement about the natural numbers, whether it is an axiom or not.

Gödel's theorem has another interpretation in the language of computer science. In first-order logic, theorems are computably enumerable: you can write a computer program that will eventually generate any valid proof. You can ask if they have the stronger property of being recursive: can you write a computer program to definitively determine if a statement is true or false? Gödel's theorem says that in general you cannot.

Many logicians believe that Gödel's incompleteness theorems struck a fatal blow to David Hilbert's program towards a universal mathematical formalism which was based on *Principia Mathematica*. The generally agreed upon stance is that the second theorem is what specifically dealt this blow. However some believe it was the first, and others believe that neither did....

[More....]